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Abstract

We propose a geometric approach to animating
thin surface features of Smoothed Particle
Hydrodynamics (SPH) based water. Explicit
inter-particle connections are created among
SPH particles to approximate the geometries of
thin surfaces while addressing the issue of un-
resolved surface areas. The deformations mea-
sured on the connections actuate the animations
of the surfaces by disconnecting the stretched
and bent connections. The reconstruction of
thin surfaces and the accuracy of the animation
are improved by adding auxiliary particles over
the connections via Poisson-disk sampling.

Keywords: fluid animation, inter-particle
connection, smoothed particle hydrodynamics

1 Introduction

A distinctive feature exhibited by water is the
existence of an interface known as a free sur-
face. Unlike gases, water can form complex sur-
faces, as observed in various natural phenom-
ena. Therefore, accurate treatment of the inter-
face is very important to capture a realistic im-
pression of water. Many existing studies have
reproduced water surfaces faithfully [1, 2, 3].
One of the remaining challenges lies in simulat-
ing the small-scale structures of water surfaces
and associated small-scale effects.

In particle fluids, surfaces are described by
the composition of isovalues evaluated using in-

dividual Gaussian-like kernels defined at surface
particles. Polygonal meshes are generated by
applying the marching-cube method to the com-
puted isosurfaces. As the evaluation of isoval-
ues uses distances measured in 3D spaces, a spa-
tial distribution of surface particles plays an im-
portant role in determining the shape and the
quality of reconstructed surfaces. According to
the configurations of the surface particles, the
reconstructed surfaces demonstrate various ap-
pearances of liquid such as droplets, ligaments,
or sheets.

A difficulty arises from the fact that a low
sampling density at surfaces can lead to areas
unoccupied by the kernels of particles. One
remedy is to increase the number of particles
adaptively at such areas. However, as the ex-
isting adaptive-sampling methods add new par-
ticles symmetrically [4], spherically [5], cubi-
cally [6], or at the corners of a tetrahedron [7]
around the splittable particles, without knowl-
edge of the target shapes to be reconstructed, the
resulting sampling may differ from the thin tar-
get shapes.

In order to circumvent the issue of unre-
solved target geometry, we introduce explicit
inter-particle connections. Specifically, we cre-
ate linear connections among surface particles
in sparsely sampled regions in order to approx-
imate the unresolved geometric structures in a
piece-wise manner. Conceptually, this approxi-
mation shares a similarity with nonlinear dimen-
sionality reduction methods such as the isomap
which estimates the intrinsic geometry of data,



Figure 1: A sequence of images rendered from a scene with a sphere shaped water colliding with
a wooden pole. The shapes and the formations of liquid sheets and liquid ligaments are
captured by inter-particle connections that are created among surface particles.

based on an approximation of each data point’s
neighbors. Along with our inter-particle con-
nections, we propose the following components
to reproduce animations of thin surface features
in Smoothed Particle Hydrodynamics (SPH) flu-
ids.

o Surface breakup animation method that
produces animations of thin surface fea-
tures at the unresolved regions. In particu-
lar, the model determines whether the unre-
solved regions experience surface breakup
or not, depending on the continuity status
of each inter-particle connection. A linear
approximation of the tensile and the bend-
ing deformations is utilized for the determi-
nation of the continuity status of each con-
nection.

e Dynamic upsampling method that allows
accurate checking of the continuity status
of each connection by incorporating more
accurate surface normals. The applica-
tion of the Poisson-disk sampling method
serves this purpose.  Specifically, the
method adds new samples to the connec-
tions to increase the sample density and im-
prove the accuracy of the surface normals
of surface particles.

o Thin surface reconstruction method that re-
constructs surfaces including thin features
by using SPH particles and inter-particle
connections. We adopt a moving-average
based method [8] to reconstruct smooth
surfaces; in order to reproduce surfaces at
unresolved areas, we extend the method by
reflecting the contributions from the parti-
cles to the connections.

Our method is the first attempt to address the
animation of small-scale surfaces in unresolved
areas; these surfaces are difficult to handle
using previous methods. As shown in Figure 1
and 2, our method allows the reconstruction
and the animation of small-scale water surfaces
in such regions by utilizing the inter-particle
connections. In addition, our solution can
be used as a post-processing tool because 1)
requisite data are the geometry of particles
and 2) newly generated samples during the
dynamic upsampling process do not disturb the
simulation results.

Inter-particle Connections The connec-
tions represent a stored set of neighbor lists of
the surface particles. Here, the surface particles
are the ones that have fewer than 10 neighbors.
For every simulation frame, new connections
can be generated for each surface particle,
and the generated connections are updated or
disconnected according to predefined geometric
conditions. Details of the geometric conditions
are given in Section 3.

2 Related Work

SPH Water Desbrun and Gascuel [9] intro-
duced an SPH method to the computer graphics
field and Miiller et al. [1] extended the method
to the simulation of water. Later, the method
was employed in a variety of water simulations.
Examples include fluid-fluid interactions [2],
frothing bubbles [10], under water bubbles [11],
liquid-liquid mixtures [12], porous flow [13],
interfaces between multiple fluids [14], and
water turbulence [15, 16]. One drawback of
the SPH solver for water simulation lies in the



Figure 2: A sequence of images captured at (a, b) 26th frame and (c, d) 37th frame. Compared to
the smooth surface reconstruction method [8], our result in (b) shows more sheets than are
present in (a) and the result in (d) shows more ligaments than are present in (c).

difficulty of enforcing incompressibility due
to the use of stiff equations of state (EOS).
Several remedies, including a predictive-
corrective incompressible SPH (PCISPH) [17],
a grid-particle hybrid method [18], and the
kinematic constraints based method [19] have
been proposed. In addition, adaptive sampling
methods [4, 6] were introduced to address
the scalability issue. Recently, methods for
more accurate fluid-solid coupling [20] that can
incorporate the density contributions of frozen
particles [3] or ghost particles [21] have been
developed.

SPH Surface Reconstruction The faithful
reproduction of the surfaces of SPH particles
with small-scale features has been an important
research topic. Solenthaler et al. [5] proposed
a method to refine water surfaces via particle
upsampling. Juraj et al. [22] presented a density
normalization technique to address the issue of
low sampling density at surfaces. For particle
skinning, Bhattacharya et al. [23] proposed a
constrained optimization based formulation that
aims to minimize the thin-plate energy of sur-
faces using a level-set. In order to capture thin
and continuous water surfaces, Yu and Turk [24]
introduced anisotropic kernels. As the shapes
of the anisotropic kernels can be transformed
according to the local distribution of particles,
the resultant surfaces become smoother and
more stretched with fewer holes than the
surfaces from the isotropic kernel [4, 8, 1].
Ando et al. [25, 26] adopted the anisotropy
concept to split breakable particles in the
fluid-implicit particle method (FLIP). Instead of
using implicit kernels, Yu et al. [27] proposed

a triangle-mesh based surface-tracking method
for SPH.

3 Surface Breakup Animation

3.1 Tracking unresolved surfaces

In reality, surface breakup is a typical phe-
nomenon that can be observed in thin water sur-
faces. The effects of surface tension and of
high-frequency disturbances are the main phys-
ical factors that drive such a surface breakup.
However, its simulation using SPH is challeng-
ing because of the existence of areas unoccupied
by any particles.

In SPH water simulation, the emergence of
unresolved regions can be interpreted as the re-
sult of geometric separations of the neighbor-
ing surface particles. One way to identify these
separations is to trace the changes of Euclidean
distance among neighboring surface particles.
However, when the measurement of the inter-
particle distance relies solely on a smoothing
kernel, the range in which the separations can
be traced is limited by the employed smooth-
ing radius. Moreover, if one increases the radius
for the tracing, measuring the distances between
surface particles in every frame would require a
considerable amount of computational cost due
to the increase in the number of candidate neigh-
bors.

Instead, we employ inter-particle connections
between the surface particles to more efficiently
track the separations across consecutive frames.
The connections can reach areas that are beyond
the spatial coverage of the kernels by setting the
maximum connectable range larger than the ra-



Figure 3: Visualizations of inter-particle connections. The images were captured at four simulation
frames: (a) 30, (b) 40, (c) 50, and (d) 60. The connections are colored according to the
magnitude of the stretching deformations from red (high) to blue (low).

dius of a kernel. The generation and disconnec-
tion of inter-particle connections are governed
by several geometric conditions.

3.2 Geometric conditions for connections

Generation The directions of new connections
have to be constrained to the tangential direc-
tions of the surfaces because we focus on repro-
ducing breakable surface elements such as thin
water sheets or ligaments. Consequently, the an-
gle of a candidate vector x;; should satisfy the
following condition for the candidate to become
an actual connection between a surface particle
x; and a neighboring surface particle x;.

1D - Rij| < ke (D

Here, 1n; is the unit surface normal at x;, X;; de-
notes the normalized version of x;; and k is set
to 0.15 to validate tangential candidates. At the
same time, the candidate vector has to fulfill the
following distance condition since the main pur-
pose of the connection is to properly detect the
pairs of surface particles at the moment of their
geometric separation.

d< ‘Xij’ < h (2)

Here, d represents the rest distance between
particles and & is the smoothing length of the
employed SPH particles. When the candidate
satisfies Equations (1) and (2), it will be stored
as a new connection c;;. In this way, the geome-
tries of the unresolved areas are approximated
by an aggregation of the stored connections.

Update In each simulation frame, the length
of each connection is updated as the connected

particles move around. Next, the connections
that are either too long or too short to represent
unresolved areas are removed according to the
following condition.

‘Cij‘ <d or |Cij‘ > hmax (3)

Here, hpyax defines the maximum connectable
range and is set to 4h in our experiments.
In addition, a connection is removed if two
connected SPH particles have more than 10
neighboring particles. This is because such
particles are not surface particles and thus such
connections do not represent unresolved areas
anymore.

Disconnection Since thin surfaces in real-
ity are prone to tearing and rupture by various
physical factors, the simulation of surface
breakup phenomenon is essential for the ani-
mation of such surfaces. In order to model the
phenomenon in unresolved areas, we propose to
use a geometric approach. The idea is to mea-
sure the strains of stretching deformations and
the local curvatures of bending deformations
over the connections; this idea is inspired by
the observation that the breakup phenomena of
thin sheets or thin ligaments resemble those of
inextensible thin shells [28]. Thin surfaces can
be torn when they experience a large stretching
deformation in a short time period.

p

leij| — Cij

> ks “4)

where cfj is the length of a connection in the

previous frame and k; is set to 0.15 to capture
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Figure 4: Our Poisson-Disk (PD) sampling technique adds a new PD sample to the inter-particle con-
nections. These samples are then utilized at sparsely sampled regions for the computation

of surface normals.

sudden stretching. In addition, we capture the
breakup effect due to bending deformations by
measuring the local curvature of the connection.
As the curvature x can be expressed as a diver-
gence of unit normal kK = —V - 11, we approx-
imate the curvature by using the surface normal
and the length of a connection as follows:

D, -

<k (5)
|cij

where £, is set to (0.1/h). If a connection satis-
fies one of the two conditions for disconnection,
it is removed from our system. In this way, the
removal of deformed connections from a scene
can approximate the breakup status of thin sur-
face features in the unresolved areas. Figure 3
shows a visualization of the disconnections.

4 Dynamic Upsampling Method

4.1 Poisson-disk sampling method

In our system, surface normals play important
roles when animating the thin surfaces. In par-
ticular, the conditions for generation and discon-
nection rely on the surface normals. However, it
is challenging to find accurate surface normals
with sparse samples. In order to increase the ac-
curacy of the surface normals, we introduce a
dynamic upsampling method. The basic idea is
to provide auxiliary samples in sparse regions.
Figure 4 illustrates the overall process of com-
puting surface normals utilizing our upsampling
method.

While the geometry of thin surfaces is ap-
proximated by the connections, unresolved ar-
eas suffer from deficiency of samples due to lo-
cal separations of particles. In order to add more
samples efficiently, we formulate the upsam-
pling process as a Poisson-disk sampling prob-
lem because the method 1) generates and dis-
tributes samples while maintaining a minimum
distance between them and 2) achieves fast per-
formance while maintaining the sampling qual-
ity.

We adopt a fast Poisson-disk (PD) sampling
technique [29] that computes upsampling with
a time complexity of O(NN). Based on the PD
sampling method, our approach skips the re-
gions that are not occupied by any connection
because such regions are not likely to be wa-
ter surfaces. The next sub-section describes the
procedure of our Poisson-disk sampling in de-
tail.

4.2 Upsampling over the connections

Our upsampling process takes the inter-particle
connections as input and produces auxiliary
samples on the connections as output. The pro-
cess begins by initializing a 3D grid that will
contain both SPH particles and newly gener-
ated samples. The size of a voxel of the grid is
bounded by r/+/3 in order to set the minimum
distance to r, which is same as the rest distance
between employed SPH particles.

Step 1. Traverse the grid and mark the voxels
that contain at least one SPH particle.

Step 2. Select a connection c;;.



Figure 5: Comparison of normal vectors computed by (a) Color field [1], (b) Smoothed color
field [14], (c) Smoothed color field, (d) Weighted PCA (WPCA) per particle, (¢) WPCA
per voxel, and (f) our method. The normal vectors are colored yellow. The blue particles
and the brown particles represent SPH particles and a static obstacle, respectively.

Step 3. Generate candidate points in the voxels
that encounter c;;.

Step 4. If the candidate point is far from existing
samples or SPH particles, register the candidate
point as a new sample.

In each frame, our upsampling method iter-
ates from Step 2 to Step 4 while visiting all
the connections. In Step 3, when the candi-
date points do not align with the connections,
we move the generated samples in the direc-
tion of the normal of the connection in order
to place the samples on the connection. During
upsampling, we can achieve collision avoidance
with existing SPH particles by treating them as
pre-generated Poisson-disks. The generated PD
samples maintain the minimum distance r from
other samples, including the existing SPH parti-
cles.

4.3 Computing surface normals

After upsampling, we improve the accuracy of
the computation of the surface normals by uti-
lizing added PD samples. The idea is to treat
the PD-samples as adjacent SPH particles when
computing the mass-density and the surface nor-
mal. As the computation of SPH interpolation
requires a resolved mass-density, we first com-
pute a new mass-density for connected particles
and PD samples, as follows:

p; = Zj m;Wi; + Zk mWir,  (6)

Here, p; is the corrected mass-density, m; and
my, denote the mass of an SPH particle and that
of a PD sample, respectively. k is the index of
nearby PD samples, and W;; and W, represent
a poly kernel [1] with smoothing length h.

We add the new term to the typical mass-
density equation [1] to reflect the increased sam-
pling density from neighboring PD-samples. As
this correction process is applied only to the
connected particles, the added term does not
have any influence on other SPH particles. In
addition, the corrected density field p* is not in-
corporated into the SPH simulations, and thus
the PD samples do not modify the motion of the
SPH fluids. Similarly, the masses of the PD-
samples my are also not involved in the sim-
ulation, and thus the mass-conservation of the
system is not affected by this computation.

We use the color field method for the compu-
tation of surface normal vectors, as in [1]. An
additional term is added to the typical equation
in the same way as in the above density correc-
tion process. A normal vector for each particle
can be computed as follows:

* mg = my :
np= VWi —EVWa ()

Here, n; denotes the corrected surface normal
of a surface particle; p} and pj, represent the cor-
rected mass-density at nearby SPH particles and

PD samples, respectively. By utilizing these cor-
rected mass-densities, our method increases the



Figure 6: A sequence of images captured at (a, b) 40th frame and (c, d) 80th frame. The surfaces
reconstructed using our method (b, d) have fewer holes than that underwent smooth surface
reconstruction [8] (a, ¢) due to the contributions of the inter-particle connections at the
reconstruction stage.

accuracy of the normal vectors in sparsely sam-
pled regions. Figure 5 shows a comparison of re-
sults from our method and the existing method.

5 Thin surface reconstruction

5.1 Contributions from the connections

The breakup status of each connection, which is
determined by the geometric conditions, reveals
the existence of the underlying geometry in the
unresolved areas. For example, when a connec-
tion is maintained, it is likely that water surfaces
exist around the connection. Therefore, we re-
construct surface meshes where connections ex-
ist. Specifically, we include the contributions
from the PD samples on each connection in the
surface reconstruction stage.

In order to obtain smooth surfaces, we adopt
a moving average based method [8] that utilizes
the average position X and the average radius 7.
The equation for evaluating iso-values ¢ can be
written as follows:

¢(x) =[x = x| =7 (8)

where x denotes the position of the vertex of the
employed marching cube grid. Differently from
the original definition, we add the contributions
from the PD samples when computing X and 7.
Therefore, the modified equation that computes
the average position can be written as follows:

X = Zl w;X; + Zk WEXE 9)

where the subscripts ¢ and k£ denote the nearby
SPH particles and the PD samples within the

smoothing range 2h, respectively. Similarly, the
modified equation that computes the average ra-
dius can be written as follows:

F= Z wir+zkwkr (10)

where r denotes the radius of an SPH particle.
w; and wy, represent the average weights com-
puted at each neighboring particle in the same
way as in [8].

5.2 Rescaling the particle radius

When evaluating the average radius 7 in Equa-
tion 10, as PD samples are additionally involved,
the overall volume of the surfaces may increase.
We apply the following equation in order to pre-
serve the volume by rescaling the radius of both
the SPH particles and the PD samples.

v/n/(n+m)r) (11)

r = max(Tmin,

Here, we set 7y, to 0.25r in our experiments. n
and m denote the number of SPH particles and
PD samples involved in evaluating the isovalues,
respectively. If no PD sample is involved, r is
set to be the same as the original particle radius.
The effect of rescaling is valid only in the sur-
face reconstruction stage, and does not affect the
SPH simulation.

6 Results and Discussion

Implementation Our fluid solver adopts the
PCISPH method [17] to enforce imcom-
pressibility, and adopts a boundary handling
method [3] for fluid-solid coupling. As the



Figure 7: A space rabbit is walking across a thin water wall in a zero gravity condition. The images
are from frames (a) 45, (b) 60, and (c) 75, respectively. The thin sheets over the belly of the
rabbit and the thin ligaments generated from the surface breakups are captured.

simulation parameters in the geometric condi-
tions are not sensitive to test scenes, we used
fixed values in all our experiments. The surface
meshes were generated by the marching cube
technique with resolutions of 133x133x133
and 150x150x150 for (Cube drop/Milk Spoon
scene) and (Wooden pole/Space Rabbit scene);
meshes were rendered using the Maxwell
renderer. Table 1 shows the average timings
per simulation frame. The time spent for the
marching-cube technique is also included.
The process of applying the connections and
upsampling consumes around the 10% of time
relative to the SPH solver.

Scene # of SPH Our
name particles | only | method

Wooden pole | 204,000 | 6.13s 6.58s

Cube drop 78,000 | 3.02s 3.35s
Milk spoon | 120,000 | 4.023s | 4.714s
Space rabbit | 426,000 | 12.06s | 13.174s

Table 1: Performance comparison. The simula-
tions were performed on a system with
an Intel Xeon 2.3 GHz CPU.

Fluid-object interaction Our solver samples
the surfaces of objects with fluid-like parti-
cles for fluid-solid coupling. Therefore, any
voxel that contains these particles is marked
as occupied by Step 1 in the PD sampling
process. As those voxels are skipped by Step
4, new samples are not created on the surfaces
of the objects. While it is possible that new
samples might be generated inside an object

when parts of the connection penetrate the
object, such penetrations were not observed in
our experiments, such as in Figures 1, 2, 6 and 7.

Comparisons with previous work In Fig-
ures 2 and 6, the reconstruction surfaces are
compared with those from Zhu and Brid-
son [8] in order to identify the effects of the
inter-particle connections. In addition, we
implemented the anisotropic kernel from Yu
and Turk [24] for comparison of its effects on
the surface reconstruction for filling of the unre-
solved areas. In Figure 8, while the anisotropic
kernel [24] extends the water surfaces to the un-
resolved areas while the extensions are limited
to the vicinity of existing particles, our results
show the surfaces with fewer holes at such
areas. In addition, as we add more PD samples
to the sparsely sampled areas, which shares a
similarity with the previous adaptive sampling
methods [25, 26], we tested one scene in order
to verify that our results can produce similar
results in terms of preserving thin sheets. In

Figure 8: The surface reconstructed by (a) the
anisotropic kernel [24] and (b) our
method.



Figure 9, we borrowed an image from Ando
et al. [26] for a side-by-side comparison. Our
method produces a similar shape of thin water
surface by employing several inter-particle
connections.

—
"\_' /

Figure 9: Images in the top-row are from Ando
et al. [26]. The colored lines at
the bottom-left represent the generated
connections.

7 Conclusions

We presented a geometric approach to the ani-
mation of thin liquid surfaces of SPH fluids. In
particular, we introduced explicit inter-particle
connections that can represent the geometry of
unresolved areas, allowing breakup simulation
of SPH surfaces. We applied a Poisson-disk
sampling method that adds PD samples to the
connections for the purpose of increasing the
accuracy of the breakup simulation. In addi-
tion, the PD samples were exploited in the sur-
face reconstruction stage to reproduce thin water
surfaces. We demonstrated the effectiveness of
the proposed method by showing several test re-
sults.

A limitation of our method is that the ani-
mated surfaces may suffer from temporal incon-
sistency. Water volumes in-between particles
may appear or disappear across frames result-
ing from the additions or deletions of PD sam-
ples to/from the connections. Such artifacts oc-
cur because the surface breakup phenomenon,
which has a smooth transition phase in reality, is

modeled based on a simple binary status. In fu-
ture work, we will investigate a remedy that can
utilize more states, such as a post-connection
state and a post-disconnection state, to animate
the transition smoothly, and thus to reduce arti-
facts.
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