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Abstract Simulating water turbulence is challenging

as it requires multi-scale vortical motions to be resolved

with an emphasis on reproducing small-scale details.

This paper presents a novel particle-based method to

simulate water turbulence. To reduce numerical dis-

sipations, which consume small-scale details, we have

incorporated the Hermite-interpolation scheme into a

particle-advection process. For capturing large- and small-

scale vortical motions efficiently, we propose instant-

kernels and a small-scale vorticity (SSV) model, respec-

tively. The results of simulations with various examples

demonstrate the efficiency and the physical accuracy of

our method in reproducing turbulence effects in particle

fluids.
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1 Introduction

Turbulence is visually interesting. As observed in every-

day surroundings, turbulent flow is unsteady, irregular,

and seemingly random. The key challenge in simulat-

ing water turbulence lies in resolving small-scale veloc-

ities. Due to the numerical diffusion inherent in simu-

lations, small-scale velocities tend to vanish, and sim-

ulated flows often exhibit viscous motion. In order to

resolve the small-scale velocities correctly, the simula-

tion domain should be discretized into very small spa-

tial and temporal units. However, this incurs a heavy

computational cost.

To remedy this situation, in grid-based simulations,

high-order advection schemes [13,14,17,26] have been

proposed. These methods reduce the numerical errors

that occur in the advection process and reproduce high
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levels of turbulence by broadening the range of resolv-

able scales to some extent. Recently, in an effort to gen-

erate high-frequency velocities far beyond the resolvable

scale, a variety of turbulence synthesis methods [16,20,

25,22] have been proposed. Instead of resolving the ve-

locities directly, the synthesis methods generate very

fine-scale velocities by using noise functions based on

the dynamics of the turbulence.

Unfortunately, most of the above methods are not

directly applicable to particle fluids, because the high-

order advection schemes are primarily designed for grid-

based simulations, and because existing turbulence syn-

thesis methods are coupled with an Eulerian grid. When

they are applied to particle fluids, such coupling entails

particles-to-grid or grid-to-particles interpolation pro-

cedures, which can introduce additional numerical dif-

fusion to particle-based fluid simulations. Moreover, a

high-resolution grid is required to suppress the numer-

ical diffusion, which can undermine the meshless prop-

erty of particle fluids by limiting the size of the domain

to avoid high simulation costs.

In this work we introduce a novel method for par-

ticle fluids to simulate water turbulence. In contrast

to existing methods [16,20,25,22], our method simu-

lates effects of turbulence without relying on an Eu-

lerian grid. Our Lagrangian approach consists of two

components: (1) a particle-based high-order advection

process, and (2) a multi-level vorticity-enhancing pro-

cess. Each component is applied to particle velocities

sequentially to reinforce the weakened turbulence ef-

fects. The first part, a high-order advection process,

focuses on diminishing numerical diffusions that occur

when integrating the particle velocities. In particular,

we employ the Hermite-interpolation method [5] to par-

ticle fluids so that the computed velocities have more

small-scale details. In the second part, we develop a new
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vorticity-enhancing process to capture vorticity forces

in multi-levels. Specifically, we introduce the use of in-

stant kernels with a scalable radius for the computation

of large-scale vorticity forces. To handle costly small-

scale vorticity forces, we propose a novel small-scale

vorticity (SSV) model that only requires velocities from

neighboring particles. By integrating these two compo-

nents, we can provide an efficient particle-based tech-

nique to simulate water turbulence. Figure 1 shows the

overall process.

2 Related Work

We briefly review relevant research on turbulence sim-

ulation. As our fluid solver is based on Smoothed Par-

ticle Hydrodynamics (SPH), a survey of previous work

on SPH turbulence simulations follows next. We also

survey the work on SPH-LES turbulence models from

the computational fluid dynamics (CFD) field, as those

models are closely related to our SSV model.

2.1 Turbulence Simulation

As turbulence has a wide spectrum of velocity scales,

applying the direct numerical simulation (DNS) ap-

proach to resolving minute details can lead to high com-

putational cost. Recently, as alternatives to DNS, many

cost-effective methods have been proposed to simulate

turbulence effects. One popular approach is the pro-

cedural turbulence-synthesis method, which was pio-

neered by Stam and Fiume [30]. During simulations,

the costly small-scale parts are separately generated by

using noise functions that are guided by low-resolution

grid-velocities. This scale separation drastically reduces

the total simulation cost. Stam and Fiume [30] em-

ployed an inverse Fast Fourier Transform (FFT) method

to generate a small-scale velocity field. Kim et al. [16]

applied a band-limited wavelet method to guide the ad-

dition of high-frequency details.

Another approach is based on modeling of the tur-

bulence kinetic energy. This approach computes the

distribution and the evolvement of the turbulence en-

ergy by solving additional energy-governing equations.

Narain et al. [20] generated small-scale noise fields and

synthesized them into a resolved velocity field by using

an energy-transportation equation. Schechter and Brid-

son [25] used an extended k-ε method combined with a

noise function to produce subgrid-scale turbulence. Re-

cently, Pfaff et al. [22] proposed a turbulence particle

method that simulates the turbulent energy dynamics

by solving a well-known k-ε equation in a Lagrangian

way.

Fig. 1 Our method allows (right) SPH solver to reproduce
turbulence effects by integrating (left-up) a multi-scale vor-
ticity enhancing process and (left-down) a high-order advec-
tion process. Note that two-components of our method com-
plement two steps in the conventional SPH solver so that
they can be easily integrated with WCSPH [2] and with
PCISPH [29], which emphasize the enforcement of the in-
compressibility.

The preservation of subgrid-scale details from nu-

merical diffusion is another important approach for re-

producing realistic turbulence effects. This approach

utilizes the advantages of the non-dissipative nature

of Lagrangian particles. Selle et al. [27] employed the

vortex particle method to simulate water and smoke

turbulence. Park and Kim [21] simulated the circulat-

ing motion of rising smoke by using vortex particles.

Pfaff et al. [23] seeded vortex particles into precom-

puted turbulence regions to reproduce vortices around

objects. Narain et al. [20] allowed particles to carry a

noise function that generates a high frequency vector

potential field according to their sum.

A distinctive feature of our method is that it is de-

signed for particle fluids. As most existing methods [16,

15,11] rely on grid-based fluid simulations, such meth-

ods are not directly applicable to particle-based fluid

solvers such as SPH.

2.2 SPH Turbulence Simulation

With recent improvements on SPH solvers [8,29,6,9],

a number of researchers have paid attention to sim-

ulating turbulence in SPH fluids. For example, Bo et

al. [35] proposed a particle-grid hybrid formulation for

reproducing vortical details in a SPH fluid simulation.

In their work, the creation of vortices is handled by

high-resolution grids, which move along the objects.

The preservation of the generated vortices is simulated

by transferring the vortices from grid cells to SPH parti-

cles. Similarly, Jang et al. [12] proposed a hybrid formu-

lation that simulates multi-level vortices in SPH. They

employed multiple Eulerian grids to reproduce vortic-

ity fields in multiple scales. The main advantage of their
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hybrid formulation is that it exploits the regularity of a

Eulerian grid in detecting highly-deformable volumes.

While the purpose of previous works [12,35] is simi-

lar to ours, their hybrid formulations are different with

our method in two respects. First, in the previous work,

the creation of vorticity forces is spatially limited due to

the employed Eulerian grid; the vorticity forces are cre-

ated at encasing grids that move along with objects [35]

or at the deformable voxels in uniform grids [12]. Sec-

ond, as the evolution of vortices is processed separately

with the creation process in their formulations, addi-

tional governing equations [35] or multiple Eulerian grids

are required [12] to evolve the vorticity. In contrast, our

method can create and evolve vorticity for the flows in

the whole domain without Euerian grids, because the

vorticity can be computed and carried by SPH parti-

cles. Recently, Yuan et al. [34] proposed a swirling in-

centive particle (SIP) method. In their method, they

introduced random swirling-probability values to effi-

ciently mimic the stochastic nature of the turbulence.

In contrast, we strive to compute multi-scale vorticity

forces to capture the dynamics of turbulence faithfully.

2.3 SPH-LES Turbulence Model

In the CFD field, there have been several attempts to

apply existing turbulence models, which were originally

developed for grid-base methods, to SPH simulations.

The large eddy simulation (LES) model has been ap-

plied to simulate collapsing water columns [10]. Shao

and Gotoh [28] proposed a SPH-LES model to simulate

propagation of waves close to a coastline. The k-ε model

was applied to simulate a turbulent channel flow [32].

However, the applications of the above methods are of-

ten limited to 2D test-cases with a simple turbulence-

closure model due to high computational costs required

for more complex models in 3D.

A fundamental difference between the existing SPH-

LES turbulence models and our method lies in the man-

ner used to close the subgrid-scale tensor. Typically, the

tensor is closed by adopting a turbulence-closure model

that uses an eddy-viscosity assumption. In contrast, as

we are interested in modeling and evaluating the dy-

namic effects of small-scale vorticity forces, we directly

compute the subgrid-scale tensor term without relying

on the eddy-viscosity assumption. In order to close the

tensor term, we estimate the unresolved small-scale ve-

locities by exploiting the resolved large-scale velocities.

We describe this estimation process in detail in Section

4.5. In addition, as our method is purely Lagrangian,

simulations in the 3D domain can easily be accelerated

with the aid of the latest GPU via parallel processing.

3 SPH High-order Advection Process

3.1 Numerical Dissipation

The discretization of the momentum equation intrinsi-

cally entails numerical dissipations. As the accuracy of

a particle-based simulation depends on the sampling

resolution of moving interpolants (SPH particles), a

very large number of samples is necessary to satisfy the

resolution required to resolve turbulence effects, which

tends to make numerical simulation infeasible.

In practice, the particle resolution can be adjusted

to achieve balance between the visual quality and the

speed of simulations. Depending on the employed res-

olution, SPH simulations surrender small-scale quality

to some extent due to the numerical dissipations caused

by the finite resolution. This phenomenon acts as an im-

plicit filter when resolving the velocity fields. Reflecting

this implicit filtering effect, we can write the momen-

tum equation with filtered quantities as follows:

ρ
dūi
dt

= − ∂p̄

∂xi
+ µ

∂2ūi
∂x2j

+ fexti . (1)

Here, quantities with an overline denote filtered values.

i.e. p̄ is a filtered pressure. µ is the fluid viscosity and

fexti denotes the external-force term for gravity, user

defined forces, or vorticity confinement forces, where

i, j ∈ {0, 1, 2} is the tensor index and i 6= j.

Note that, compared to the momentum equation in

the Navier–Stokes Equations, the non-linear advection

term is omitted in Equation 1. Typically, the term is as-

sumed to be unnecessary because SPH particles carry

physical quantities in a Lagrangian manner. In an SPH

solver, the integration-step implicitly replaces the re-

moved advection term. However, this replacement is

another source of numerical dissipation, because con-

ventional integration schemes are related to a simple

linear-interpolation task. To address this problem, we

introduce a high-order interpolation scheme for particle

advection.

3.2 High-order Particle Advection

A second-order leap-frog method is a typical choice [18,

33] for time integration. This method defines velocities

at the mid-points of time-steps. For each time step, the

positions of particles are updated by using the velocities

of the next mid-point as xt+∆t = xt +∆tut+1/2∆t. The

velocities are computed as ut+1/2∆t = ut−1/2∆t +∆tat,

where at denotes the acceleration at time t.

While this method is a second order, it introduces

numerical dissipation to at. The numerical dissipation

results from the utilization of ut when computing at.
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Specifically, ut is required when computing vorticity

forces or viscosity forces [19,29], which determines the

acceleration at. As the estimation of ut is based on a

simple linear-interpolation as ut = (ut−1/2∆t + ut+1/2∆t)/2,

the numerical dissipation can be introduced to at, which

consequently consumes high-frequency momentum at

the particle-advection stage.

Adopting a high-order interpolation scheme such

as the 4th-order Runge-Kutta or cubic-interpolation

method can be a remedy. However, they require several

points (or more memories) for evaluations. For example,

a simple cubic-interpolation method would require data

from 4 different time steps simultaneously for all the

particles. Such memory consumption makes most high-

order schemes inadequate for simulating scenes that ac-

company a large number of particles.

As an alternative, we employ the Hermite interpola-

tion method. The interpolation function can be written

as follows:

QH(r) = RTMHU
T (2)

Fig. 2 Hermite-interpolation corrects the velocity at time t
by using the accelerations at−1 and at, and diminishes nu-
merical diffusion.

where 0 ≤ r ≤ 1, RT is the coefficient vector, MH is

the Hermite basis matrix, and UT is the Hermite geom-

etry vector. Setting r = 0.5 as ut = QH(0.5) estimates

the value of ut. This interpolation method takes ve-

locities (ut−1/2∆t, ut+1/2∆t) and accelerations (at−1, at)

from two time steps as input (Figure 2), and corrects ut
to reproduce less dissipative flow motions. Note that, to

avoid spurious oscilations during corrections, we employ

a condition to exclude velocities that have a magnitude

lower than a user-given threshold as |ut| > ku. Figure

3 shows the results of corrections.

As the requirement of data from only two time steps

saves memory, GPU acceleration becomes possible, which

is often limited by a small amount of available mem-

ory. In particular, compared to the typical SPH im-

plementation, an array for storing at−1 is additionally

required. Details on the interpolation function QH(r)

can be found in the appendix.

4 Multi-level Vorticity Enhancing Process

The goal of the second component is to reinforce the

weakened turbulence effects in the flow by enhancing

Fig. 3 Images captured from a single-dam breaking scene
at frame 455 (top row) and frame 622 (bottom row), respec-
tively. Red circles highlight the effect of our high-order ad-
vection in the corrected flow. Less dissipative velocities re-
produce sharper features in the flow than the normal SPH
flow does (left column). The magnitudes of the velocity for
each particles are represented with a color spectrum from low
(blue) to high (red).

multi-scale vorticity forces. This component takes the

velocities computed from the particle-advection process

as input, and computes large- and small-scale vorticity

forces for each particle. In this section, we describe how

to compute the vorticity forces from each scale in turn.

4.1 Particle Vorticity in SPH

We assume that the total vorticity ωTi for each particle

is composed of large-, normal-, and small-scale vortic-

ity as ωTi = ωLi + ωNi + ωSi . The criterion for the scale-

separation is the size of the kernel. One way to compute

such vorticity is to apply the curl operation to the par-

ticle velocity, delineated as ωi = (∇× u)i. In SPH, an

approximation of the curl-operation can be written as

follows:

ωi =
∑

j
((ui − uj)/ρi)∇×Wij (3)

where i,j denotes the index of particles and Wij →
W (xi − xj , h) is an interpolation kernel [19] that has

a smoothing range of h. As the kernel has a compact

support range h, Equation 3 measures the rotations of

the velocity field locally.

This locality of computation is one of the main prop-

erties of SPH kernels that mimic the Dirac delta func-

tion. However, it poses a spatial limitation on the mea-

surement process when computing ωLi and ωSi . In par-

ticular, as pointed out by Jang et al. [12], large-scale

vorticity ωLi that spans beyond the size of kernels is

not captured by Equation 3.
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4.2 Generating Instant Kernels

We introduce instant kernels to compute such large-

scale vorticity. The basic idea is to generate kernels

with a radius larger than h at the volumes occupied by

SPH particles (fluid-volumes) temporarily, and to uti-

lize those kernels for computing the vorticity in large-

scale as follows:

ωLi =
∑

j
((uLi − uLj )/ρLi )∇×WL

ij (4)

Here, quantities given in upper-case L are defined at

each instant kernel WL
ij . A challenge in this step lies

in generating such kernels at every simulation frame.

For the kernel generation, an important constraint is

to maintain the user-given distance between kernels to

guarantee the accuracy of the kernel-based operations [18].

A naive approach would be creating large-scale kernels

iteratively by examining distances to the existing ker-

nels to fulfill the generation-constraint, which is too

slow for practical simulation because it entails O(N2)

complexity.

In order to generate instant kernels efficiently, we

employ a fast Poisson-disk sampling algorithm [3] that

provides O(N) complexity to the same task. After iden-

tifying the fluid-volumes, we apply this algorithm to

generate new samples (or SPH kernels) with a radius of

hL at those volumes. For efficiency, we exploit a hash-

grid structure when identifying the fluid volumes; if a

voxel in the hash-grid has at least one SPH particle, the

voxel is marked as a fluid volume. Figure 4 shows the

generated instant kernels at the fluid-volumes.

Fig. 4 Images captured from a water-stream scene at frame
77 (top row) and frame 103 (bottom row). A Fast Poisson-
Disk sampling method generates large-scale instant-kernels
WL
ij at the fluid volumes. The number of particles decreases as

33,881→759 (top row) and 42,634→958 (bottom row), respec-
tively. Through a weighted-averaging process, the velocities
of SPH particles are smoothly transferred to nearby instant-
kernels. We run this instant-kernel generation process at every
simulation frame.

The physical quantities for each instant-kernel are

determined by weighted-averaging or by a summation

of quantities of nearby SPH particles. For example,

uLi =
∑
j(wjuj)/

∑
j wj , where wj is a distance-based

weight and j denotes the index of SPH particles that

lie inside the instant kernel WL
ij . As the distribution of

kernels resembles the results of a low-resolution simula-

tion, this process can be regarded as an instant approx-

imation (or a low-resolution snapshot) of the current

simulation.

4.3 Computing Large-scale Vorticity Forces

After determining the physical quantities for each ker-

nel, we can compute the large-scale vorticity by using

Equation 4. However, Equation 4 does not consider the

symmetry of operation. The application of a symmetric

formulation similar to [24] can increase the efficiency.

ωLi = ρi
∑

j
mL
j

[
(
uLi

ρ2j
L
∇×WL

ij ) + (
uLj

ρ2i
L
∇×WL

ji)

]
(5)

The next step is to compute forces for enhancing the

vortical motions of SPH fluid by using the resolved vor-

ticity field. For this, we adopted the vorticity confine-

ment method. This method [31] formulates the vorticity

force at each particle as

fLi = ε(NL
i × ωLi ) (6)

where ε is a user-given scaling-factor, and NL
i is the

normalized vorticity-location vector (NL
i = ηLi /

∣∣ηLi ∣∣).
Here, ηLi can be evaluated via SPH interpolation as

ηLi =
〈
∇
∣∣ωLi ∣∣〉 =

∑
j

(mL
j /ρ

L
j )
∣∣ωLj ∣∣∇WL

ij . By applying

this vorticity confinement method to the instant ker-

nels, the large-scale vorticity force at each SPH particle

is obtained in the form of an external force as fLi .

4.4 Small-scale Vorticity in SPH

The small-scale vorticities are the most difficult to re-

solve as they are prone to numerical dissipations. This

issue can be addressed by incorporating the instant-

kernels into the small-scale. In a large-scale scene, how-

ever, such application can lead to very high computa-

tional cost, as it requires an excessive increase of the

number of sampling points (or kernels). Moreover, the

locations of tiny instant-kernels inside the SPH parti-

cles are especially difficult to determine, as they are

chosen randomly [3]. While such randomness can be

exploited to mimic the stochastic nature of turbulence,

as in [34], it can incur spurious fluctuations in the flow

by replacing the dynamics of turbulence.
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To pursue phyiscal plausibility, we investigated ex-

isting turbulence models including LES. In particular,

the LES method avoids computation of high-cost parts

by separating them from the total velocity-field, and

by utilizing a subgrid-scale turbulence-model based on

an assumption that small-scale structures in turbulence

are homogeneous in character. The LES governing equa-

tion can be written as follows:

∂ūi
∂t

+
∂ūiūj
∂xj

= −1

ρ

∂p̄

∂xi
+ ν

∂2ūi
∂x2j

−
∂τsgsij

∂xj
(7)

The above equation is a filtered version of the momen-

tum equation in the Navier–Stokes equations, and de-

scribes temporal and spatial evolution of the large-scale

velocities. The non-linearity of the advection term in

the Navier–Stokes equations leads to the appearance of

the subgrid-scale stress tensor τsgsij after filtering. This

subgrid-scale stress term represents the dynamic effects

of the small-scale velocities on the resolved scales in the

form of additional stress. Motivated by this, we devel-

oped a new method, called a SSV model, to compute

small-scale vorticity forces.

4.5 Small-scale Vorticity (SSV) Model

The main purpose of the SSV model is to use the subgrid-

scale tensor to compute small-scale vorticity forces. By

applying the LES decomposition rule (ui = ūi + u′i),

the tensor τsgsij = uiuj− ūiūj can be written as follows:

τsgsij = (ūi + u′i)(ūj + u′j)− ūiūj . (8)

According to the Leonard decomposition [1], the term

is composed of three parts; Lij = ūiūj − ūiūj is the

Leonard stress, which denotes the interactions among

velocities in the large scale; Cij = ūiu′j + u′iūj rep-

resents the interaction of velocities between the large

and small scales; Rij = u′iu
′
j is the Reynolds stress

that represents the interactions among velocities in the

small scale. The generation of small eddies and their

dynamics is closely related to τsgsij . Note that, as the

tensor τsgsij contains unresolved components u′i, an as-

sumption for closure is required. In LES, the eddy-

viscosity assumption is employed to posit a linear rela-

tionship between the subgrid-scale stress and the large-

scale strain-rate [4]. As the LES method focuses on re-

producing turbulent large-scale eddies, the LES method

approximates the small-scale parts by simplifying their

dynamic structures with the turbulence-closure model,

and saves computational resources.

In contrast, as our goal is to enhance both large-

and small-scale vortices separately by constructing a

vorticity-force field for each scale, we compute the ten-

sor term τsgsij without relying on the eddy-viscosity as-

sumption. The computation process is composed of four

steps. First, we replace the unresolved velocity u′i with

its filtered version ū′. By this substitution, Equation 8

can be rewritten with the filtered velocity ū′ as follows:

τsgsij = (ūi + ū′i)(ūj + ū′j)− ūiūj , (9)

where ūi denotes the resolved SPH velocities, as in

Equation 1. Second, in order to compute the first term

in the RHS of Equation 9, we estimate the unresolved

velocities by utilizing velocities of nearby SPH parti-

cles. Unlike u′i, the value of ū′i can be computed. As ū

is known according to Equation 1, ū can be computed

by applying a low-pass filter as follows:

ūi = (1− α)ūi + α

(∑
j ūjSij(he)∑
j Sij(he)

)
(10)

In this equation, Sij(he) = (1 − (|xi − xj | /he)2)3, α

is a scaling-weight for filtering and he = 2h is the ef-

fective radius. Subtracting ū from the flow velocity ū

provides the value of ū′. Third, as the first term in the

RHS of Equation 9 is a filtered tensor, we apply the

same low-pass filter to (ūi + ū′i)(ūj + ū′j). Finally, the

tensor τsgsij can be computed by subtracting ūiūj from

the (ūi + ū′i)(ūj + ū′j). For each SPH particle, the com-

puted tensor is stored. Algorithm 1 shows the compu-

tation process in detail.

Algorithm 1 Computing subgrid-scale tensors

Input: [pi] (SPH particles), 0.3 ≤ α ≤ 0.5

1: // [ ] denotes a resizable array
2: // step1: compute a filtered small-scale velocity ū′i
3: for all pi in [pi] do
4: [pj ]← get neighboring particles within he(= 2h)
5: [ūj ]← get large-scale velocities of [pj ]
6: ūi ← get large-scale velocity of pi
7: ūi ← apply low-pass filter(ūi, [ūj ], α)
8: ū′i = ūi − ūi
9: τei (l) = (ūi + ū′i)(ūi + ū′i)

T

10: τei (r) = ūi(ūi)T

11: end for
12: // step2: compute a subgrid-scale tensor τei
13: for all pi in [pi] do
14: [pj ]← get neighboring particles within re
15: [τej (l)]← get left term of the tensors from [pj ]

16: τei (l)← get left term of the tensor from pi

17: τei (l)← apply low-pass filter(τei (l), [τej (l)], α)

18: τei = τei (l)− τei (r)
19: end for

To exploit the computed tensor, we evaluate the last

term in the RHS of Equation 7. As the divergence of a

tensor becomes a vector according to the tensor-index

summation rule (See appendix for details), the subgrid-

scale force term can be written as fsgsi = ∇ · τsgsi . To

compute small-scale vorticity, we apply the same curl
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Fig. 5 The visualizations of multi-scale vorticity fields in a water-stream scene. Images in each column are captured from
bottom-view of the scene at frame 87, 117, 147 and 177, respectively. Each row shows the vorticity field in the (top row)
large-scale, (middle row) normal-scale and (bottom row) small-scale. The particles are colorized according to the magnitudes
of the vorticity. The red color represents high magnitude and the blue color represents low magnitude. The scene containes an
emitter at the right side of the simulation domain. The obstacles (poles and a sphere) were omitted for better visualization.

operator used in [24] to the estimated small-scale ve-

locity field ū′i.

ωSi = |∇ · τsgsi | (∇× ū
′
i) (11)

Note that we multiply the magnitude of the subgrid-

scale force term. This process adjusts the magnitude

of the small-scale vorticity, and reflects the small-scale

dynamics in turbulence. Similar to Section 4.3, we ap-

ply the vorticity confinement method to ωSi to compute

small-scale vorticity-forces as fSi = ε(NS
i × ωSi ), where

NS
i is a normalized vorticity-location vector. Figure 6

summarizes the process of computing small-scale vor-

ticity forces.

Fig. 6 The small-scale vorticity forces are obtained by a)
computing filtered velocities to b) evaluate the subgrid-scale
tensor term. c) The small-scale vorticity field is constructed
by using curl-operation. d) The vorticity confinement method
is employed to compute the small-scale vorticity forces.

4.6 Integrating Turbulence Effects into SPH Solver

The computed vorticity forces from Section 4.3 and

Section 4.5 including the normal-scale vorticity force

(fi = ∇ × ui) are integrated into Equation 1 as a sin-

gle external force as fexti (= kLf
L
i + kNf

N
i + kSf

S
i ),

where kL, kN and kS are turbulence-scaling parameters

given by users. In addition, we solve the vorticity equa-

tion [21,27,35,34] for each scale to evolve the vorticity

in a Lagrangian manner as follows:

dω

dt
= ν∇2ω + T (u) (12)

Note that, we added a vorticity source-term T (u). This

source-term is related to the baroclinic contributions

occuring from density fluctuations in particle fluids, and

represents the creation of vorticity in the flow. In con-

trast to the existing vorticity seeding process, which
uses a random initailization [27] or a manual interven-

tion [34], our method utilizes the computed vorticity

(ωLi , ω
N
i , ω

S
i ) as the source of vorticity for each scale.

To avoid exponential increase of the magnitude of vor-

ticity, we employ an attenuation factor similar to [35].

5 Results and Discussion

5.1 Turbulence Effects

Figure 5 visualizes the spatial distribution of large-,

normal-, and small-scale vorticity. Images in each row

show different complexions on the generation and the

evolution of the vorticity. First, the large-scale kernels

(instant-kernels) outperform the normal-scale SPH ker-

nels in capturing the rotational motions of the main-

stream. Thus, the large-scale vorticity mainly emerges

around boundaries such as a spherical obstacle and do-

main boundaries. Such large vorticity is generated by



8

Fig. 7 A dam breaking simulation. The images are sampled at frames 50, 100, 150, and 150 (magnified), respectively. The
top row shows the results from a conventional SPH method and the bottom row shows the results from our method.

the collision of the mainstream and the wall, and by

strains of the mainstream around the swirling eddies.

Second, the normal-scale kernels complement the large-

scale kernels by capturing the local swirling motions

inside the mainstream. The mainstream is divided into

two sections after colliding with a sphere. The normal-

scale vorticity emerges inside those sections, and merged

and split along the sections. Finally, the small-scale vor-

tices appear mostly in the area where the large-scale

vortices do not exist. In addition, small vortices emerge

where normal-scale vortices have dissipated. This veri-

fies that our model effectively handles the dynamics of

turbulence in a physically plausible manner.

5.2 Comparisons with a Reference Simulation

Figure 7 shows an example of a dam breaking. The

overall flows from both methods have similar motions,

as the two methods share the same velocity solver and

boundary handling mechanism. However, the reference

method generates smoother surfaces lacking small-scale

ripples while ripples are found in the results obtained

via our method. In addition, the swirly motions last

longer in our results. Our method preserves small de-

tails by employing a high-order advection scheme, and

injects additional energies computed from vorticity fields

into the flow via the vorticity confinement method to

enhance vortical motions.

Figure 8 demonstrates a water-stream scene. The

images in the bottom-row show natural deformations on

water surfaces with a combination of large- and small-

scale vortical motions. The images in the middle column

show noticeable differences behind the poles; the same

number of employed particles led to different local dis-

tributions of particles in those areas. This phenomenon

is related to the momentum injected during vorticity

confinement, which makes the flow move slightly faster.

The right column shows that the effects of various scales

of the vortices satisfy the boundary conditions appro-

priately, which is difficult with the noise-based turbu-

lence synthesis methods [16,20]. In our results, the col-

lisions from both large- and small-scale velocities were

handled correctly. In addition, the vortical motions ap-

propriately deformed the water surfaces in such bound-

aries. The accompanying video shows that the repro-

duced turbulence effects vanished and eventually sta-

bilized, which is a very important requirement for the

realistic simulation of water turbulence.

5.3 Performance

The simplicity of our approach allows easy implemen-

tation on a graphics processor. In every simulation step

including a low-pass filtering step, only nearby parti-

cles are required for computing physical quantities at

each particle. Consequently, every physical quantity can

be computed in parallel. We used CUDA to implement

both large- and small-scale parts to reduce the compu-

tation time in the simulation. Table 1 shows average

timings for the simulations.
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Fig. 8 Comparisons of a water stream scene. Results from the conventional SPH method (top row) and those from our method
(bottom row). The blue cylinder-shaped source emits SPH particles for the stream. The white poles represent stationary
obstacles. Our results show more exquisite turbulent motions in the flow. The image pair in each column was captured with
different camera angles at three simulation frames; frames 50, 100, and 150.

Scene # of SPH Our Time
name particles method method difference
Dam 24,000 1.13s 1.58s 0.45s

Stream 45,000 1.023s 1.26s 0.237s

Table 1 Performance comparison. All simulations were run
utilizing a workstation with an Intel CPU, 8GB of RAM and
a NVIDIA GTX580 Graphics card. Timing is given per frame.
The offline rendering time is not included. The averages were
computed by dividing the measured simulation times by the
number of frames for each scene. The number of particles of
the stream scene denotes the number of emitted particles at
the last frame of the simulation.

6 Conclusion

We have presented a new method to enhance vorti-

cal motions in SPH fluid simulations. Unlike previous

methods that rely on an Eulerian grid, we utilize par-

ticles only for the simulation of turbulence effects. Our

method successfully reproduced various scales of vorti-

cal motions by employing a high-order advection scheme,

and by adopting a scale-separation metaphor to derive

a SSV model based on the LES method. The absence of

Eulerian grids or complex data structures allows easy

parallelization in implementation. By using the GPU

for accelerations, our method efficiently increased the

swirly motions in the flows with low simulation cost. We

demonstrated the effectiveness of the proposed method

by showing test results with realistic rendering. The

turbulence energy cascading process and the decay of

the vorticity are properly simulated in those scenes. Our

method can accurately handle the effects of collisions at

the boundaries.

While the main benefits of our method over previ-

ous methods lie in its simplicity and physical correct-

ness, the resulting accuracy may not be very high, as we

approximate the small-scale velocities with the normal-

scale velocities (Section 4.5). In order to increase the

accuracy, the small-scale velocity field has to be simu-

lated with a high sampling resolution to fulfill the re-

quired length scale for spatial and temporal discretiza-

tion. However, such dense sampling can cause the sim-

ulation to be as expensive as DNS. As a future work,

we plan to extend our method by adopting acceleration

algorithms such as Fast Multipole Method [7] to exploit

more sampling particles for simulation.
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A Divergence of Subgrid-scale Tensor

∂τij

∂xj
=

 ∂τxx
∂x

+
∂τxy
∂y

+ ∂τxz
∂z

∂τyx
∂x

+
∂τyy
∂y

+
∂τyz
∂z

∂τzx
∂x

+
∂τzy
∂y

+ ∂τzz
∂z

 (13)

B Hermite Interpolation for Velocity

QH(r) = RTMHU
T (14)

RT =
[
r3 r2 r 1

]
(15)

UT =
[
ut−1/2∆t ut+1/2∆t at−1 at

]
(16)

MH =

 2 −2 1 1
−3 3 −2 −1
0 0 1 0
1 0 0 0

 (17)


