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Abstract. We present a cartoon animation style rendering method for
water animation. In an effort to capture and represent crucial features of
water observed in traditional cartoon animation, we propose a Cartoon
Water Shader. The proposed rendering method is a modified Phong il-
lumination model augmented by the optical properties that ray tracing
provides. We also devise a metric that automatically changes between
refraction and reflection based on the angle between the normal vector
of the water surface and the camera direction. An essential characteristic
in cartoon water animation is the use of flow lines. We produce water
flow regions with a Water Flow Shader. Assuming that an input to our
system is a result of an existing fluid simulation, the input mesh contains
proper geometric properties. The water flow lines can be recovered by
computing the curvature from the input geometry, through which ridges
and valleys are easily identified.

1 Introduction

With the recent development of computer graphics technology, manually created
traditional animation is increasingly being replaced by computer-based cartoon
style rendering. However, one problem with non-photorealistic rendering (NPR),
in contrast with photorealistic rendering (PR), is excessive sacrifice of the de-
tails of individual materials and objects. For instance, a considerable amount of
recent research on cartoon shading has focused on rather simple opaque objects
[9][10][23]. Transparency, a common characteristic of water, is meanwhile often
ignored. This treatment of water as an opaque object fails to meet the standard
set by the results created by traditional cartoon artists.

In this work we present methods to draw cartoon style images that properly
represent the particular characteristics of water. Cartoon water has abstract
optical features such as transparency, reflection, and refraction. Our approach
incorporates those features via a Cartoon Water Shader. Fig. 1 shows the op-
tical features of water. Unlike previous methods that deal with only ambient
and diffuse components [9] (see Fig. 6(a)), the proposed shader also accounts
for specular components, which can represent the reflection or refraction effect
using ray tracing. Moreover, traditional cartoon animation often shows a timely
change between reflection and transparent refraction depending on the position
of the viewpoint with respect to the surface of the water. We construct a simi-
lar mechanism for automatic selection of appropriate effects based on the angle
between the normal vector of the water surface and the camera direction.



Fig. 1: An overview of our system. From the 3D input geometry, the bold outline is
extracted. ‘Cartoon Water Shader’ is applied to the water input. The user can select
from concrete reflection, abstract reflection or refraction. The difference of those ef-
fects is shown in the red box. ‘Water Flow Shader’ extracts the flow lines. These 3
components are combined to produce an output.

When depicting an object that moves across water, animators typically draw
explicit flow lines to signify the motion waves generated by the movement of the
object. In our approach, we produce water flow lines with a Water Flow Shader.
The flow regions are geometric features and can be efficiently extracted by the
computation of the curvatures on the water surface. Ridge and valley regions
determined by the curvature computations represent the water flow regions, as
shown in Fig. 1. This water flow region is incorporated into the result of the
cartoon water shader.

2 Related Work

Diverse research in cartoon rendering has been reported to date. Todo et al.
[23] provided user flexibility by adding localized light and shade using a paint-
brush metaphor. Anjyo et al. [1] also proposed an intuitive and direct manip-
ulation method for animating light and shade. In the latter, they mainly focus
on the treatment of highlights. Mitchell et al. [17] applied their real-time shad-
ing method to commercial games. Barla et al. [2] suggested X-Toon, a shader
that expands conventional cartoon shading. Various NPR techniques, includ-
ing cartoon shading, pencil sketch shading, and stylistic inking, have also been
developed [14]. As in cartoon rendering emphasizing abstraction, Gooch et al.
[11] proposed a different style of abstraction that relies on interactive technical
illustration. The abstraction is applied in [5], in which they develop a soft and
abstract style of shadows similar to that seen in fine art.

Cartoon-style rendering of fluids from physical simulation has also attracted
recent attention. McGuire and Fein [16] introduced a cartoon-style rendering



method for animated smoke particles. Selle et al. [21] proposed a cartoon style
rendering technique for smoke simulation. Advected marker particles are ren-
dered as texture-mapped 2D stencils. Instead of relying on a physical simula-
tion, Yu et al. [24] present a template-based approach. They classify cartoon
water into different types, and templates of water shapes are designed from the
specified types of water. Running water is drawn in a Chinese painting style
[25]. From the input videos, they generate the painting structure and the brush
stroke.

One of the main characteristics of cartoon animation compared to recent 3D
animation rendered by photorealistic rendering methods is the use of bold lines in
the object boundary. There are several object-based approaches. Finding ridges
and valleys from the geometry can help draw lines that describe the shape. Lee et
al. [15] drew lines along tone boundaries around the thin dark areas in the shaded
image with a GPU-based algorithm. Decarlo [6] developed a new type of line,
a suggestive contour, which is determined by the zero crossings of the radial
curvature. Curvature estimation plays an important role in extracting salient
lines from the geometry. Judd et al. [12] estimated the view-dependent ridges
and valleys from the curvature. Chandra and Sivaswamy [3] analyzed curvature
based ridges and valleys represented in digital images. View-independent ridge
and valley detection has also been proposed [19]. Meanwhile, demarcating curves,
another new class of view-independent curves, are defined on the slopes between
ridges and valleys [13].

Our approach is most similar to the work in [9], which involves a cartoon style
rendering of liquid animation. They utilize a bold outline, constant color, and
oriented texture on the liquid surface. Although their method recovers many of
the important features that water possess, they fail to address the artistic side of
cartoon rendering such as abstract optical features and water flow lines observed
in traditional cartoon animation. The proposed approach therefore tackles this.

3 Methods

The input to our system is a surface from a three-dimensional physically based
fluid simulation. The surface mesh inherently contains the geometry information,
which is useful in extracting water specific features for cartoon-style rendering.
Commercial software, RealFlow is used for the generation of water simulation.
However, any particle-based [4] or 3D grid-based solver [22] should work for our
purpose.

3.1 Line Drawing

In traditional animation, lines are drawn mostly around the boundaries of objects
to distinguish them from the background. Having the same aim as in traditional
animation, we find the silhouette from the input meshes to draw desirable lines.
We use the method suggested by [20]. Here, two identical polygons are combined
into a set with slightly different scales, and each of the two polygons has a



(a) An image-based line drawing (b) An object-based line drawing

Fig. 2: Visual comparison of (a) and (b).(b) generates suitably distorted refractions
when combined with ray tracing. (a) contains visual artifacts.

different culled face; the first is a front-facing polygon utilized for drawing the
object itself, and the second is a back-facing polygon utilized for drawing the
outlines. The scale difference between the two polygons creates the border lines
around the object, as shown in [18][20]. As our line drawing is based on objects,
our line objects also easily generate distorted refractions when combined with
ray tracing (Fig. 2).

3.2 Cartoon Water Shader

Modified Phong for Cartoon Style Adjusting the Lambertian illumination
model [14] effectively generates cartoon style shading for scenes with opaque
objects. Their cartoon shading equation consists of two main terms, ambient and
diffuse terms, which return the largest value between L · n and 0. This value
is used for dividing two colors as texture coordinates. Their cartoon shading
equation is:

Ics = IakaOd + Id[kdMax(L · n, 0)] (1)

Here, L is the normalized direction of light source and n is the normalized
direction of surface normal.

For opaque objects, their equation is sufficient to create a cartoon style image.
However, water exhibits three peculiar characteristics: transparency, refraction,
and reflection. Successful incorporation of these features helps convey realism,
even in cartoon-style water animation.

To create transparently refractive effects, we adapt the Phong illumination
model, modify L · n to Od divided by 3 colors and add ray-tracing terms. The
final illumination of the Cartoon Water Shader, Icws, is obtained as follows:

Icws = IakaOd + Id[kdOd + ksOs(R · V )n] + ksIr + ktIt (2)

Here, Ia and Id are the intensity of the ambient and diffuse light. ka, kd, and
ks are the ambient, diffuse, and specular coefficient, respectively. Os is an ob-
ject’s specular color. R is the normalized direction of reflection and V is the
normalized viewpoint direction. ksIr and ktIt are the intensity of the reflected
and transmitted ray for ray tracing. Fig. 3 (a) shows the refraction of Venus
under water.



To create a cartoon style shader, the object color is simplified into three
levels: bright, medium, and dark. We evaluated different numbers of levels and
determined that three levels produced the most convincing results, as too many
levels approached photorealistic rendering and too few levels resulted in an in-
distinguishable appearance. The level is determined by the angle between the
surface normal direction and the light direction, as follows:

Od =





Bright Color if L · n > Tbc

Medium Color if L · n > Tmc and L · n ≤ Tbc

Dark Color Otherwise
(3)

Here, Tbc and Tmc are the threshold for a bright color and a medium color,
respectively.

We distinguish two types of reflection. The first is concrete reflection, which
shows an ordinary reflection effect commonly observed in the real world. The
second is abstract reflection. The latter is also considered important in the con-
text of cartoon animation. We allow both types of reflection in order to serve
the artist’s intentions depending on the situation. Rendering the two types of
reflection is similar to the line drawing method described in Section 3.1. Con-
crete reflection is generated by setting the front-facing polygons as the reflection
target of an object. In contrast, abstract reflection is produced by setting the
back-facing polygons as the reflection target. Fig. 3 (b) and (c) show both effects
reflected from Venus on a water surface.

(a) Refraction under water (b) Concrete reflection (c) Abstract reflection

Fig. 3: Refraction effect of Venus (a) and reflection effect (b)(c) in the Cartoon Water
Shader.

Automatic Control of Refraction and Reflection Effect In traditional
animation, for simplicity artists tend to employ either a reflection or refraction
effect for a given scene, unlike the real world where both effects coexist. Artists
utilize the refraction effect when the distance between the camera and the main
character and the angle created by the two are small. Otherwise, the reflection
effect is employed.

Dynamic camera movements in a 3D scene may result in frequent transitions
between the reflection effect and refraction effect causing unwanted flickering.



Moreover, it would be very time consuming to determine a desirable effect ac-
cording to the dynamic camera movements. Therefore, a simple but effective
interpolation function that automatically determines when to apply reflection or
refraction is proposed here. As transparency directly influences the visibility of
refraction, we utilize transparency in the following equations.

kR =





kRmax if x < cos smax

kRmin if x > cos smin

f(n · V , kRmax, kRmin) Otherwise
(4)

kT =





kTmin if x < cos smax

kTmax if x > cos smin

f(n · V , kTmax, kTmin) Otherwise
(5)

Here, f(n · V , kRmax, kRmin) and f(n · V , kTmax, kTmin) are cubic polynomial
interpolation functions. n is the normal direction and V is the viewpoint direc-
tion, respectively. kRmax, kRmin, kTmax, and kTmin are the maximum reflection,
the minimum reflection, the maximum transparency, and the minimum trans-
parency coefficient, respectively. In Fig. 4(a), θB is the angle where the critical
change occurs and θS is the angle interval where interpolation happens. A user
can specify kRmax, kRmin, kTmax, kTmin, θB , and θS at the key camera posi-
tions to produce desirable reflection and refraction effects. kR and kT are then
computed automatically along the scene compositions. Fig. 4(b) shows each pa-
rameter of the control function and the shift of the reflection and transparency
coefficients according to n · V .

(a) The parameters used in
control function

(b) The shift of the reflection and trans-
parency coefficients according to n · V

Fig. 4: The parameters and the behavior of the of control function

Although utilizing well-known physics such as the Fresnel reflection and
Brewster’s angle can provide a viable solution, the primary goal of our shader
is to render a scene in non-photorealistic style. This cubic polynomial equation
works well for our purpose.



3.3 Water Flow Shader

In traditional animation, special lines are drawn in the neighborhood of objects
to effectively show the interaction between water and objects. In our simulation
results, those shapes represent the flowing motions of water and traces of the
objects. To emphasize these motions and traces, we introduce a Water Flow
Shader. With the Water Flow Shader, the critical regions from flowing motions
and traces are determined using the geometrical properties from input meshes.
As the shader takes into account important geometric features, our results faith-
fully reproduce physically persuasive motions and appearances.

Estimation of Geometrical Properties We compute both the Gaussian
curvature and the mean curvature at every vertex of the triangular mesh to
identify the critical regions on the mesh surface, as the curvature on the region
formed by the movement of objects has a higher value than other flat regions.
Using a discretization of the Gauss-Bonet theorem, we approximate the Gaussian
curvature as described in [8]. The equation is as follows:

Ki =
1
A

(
2π −

∑

j

θj

)
(6)

Here, A is the Voronoi area around Xi, and θj is an angle connected with Xi

and Xj .
The mean curvature is approximated using a discretization of the Laplace-

Beltrami operator also known as the mean curvature normal operator. A detailed
explanation can be found in the literature [8][7]. The equation is given as follows:

Hi =
1

4A

∑

j

(cotαij + cot βij)(Xi −Xj) · n̂i (7)

Here, A is the Voronoi area. αij and βij are angles adjacent to the specified
vertices, and Xj is a neighbor vertex connected to Xi. n̂i is a normal vector at
Xi. Both approximations are applied to the one-ring neighborhood of the vertex.

From the recovered Gaussian curvature and mean curvature, we specify a
ridge area connected by the vertices in which the absolute value of the Gaussian
curvature is larger than the threshold and the mean curvature is greater than
zero. Although our approach to calculate the curvatures and a rendering style
are different, our concept of specifying the regions is similar to the principle of
demarcating curves [13].

Enhancement After determining the ridge and valley region, we apply an en-
hancement algorithm. As the computation of ridges and valleys heavily depends
on the input meshes, bad geometry in the meshes can adversely affect the result.
For example, if the mesh was created by a particle simulation that represents
the details of the fluid well but introduces jiggling surfaces, our method will



(a) A fountain in a
forest

(b) A boat sailing on
the sea

(c) An image cre-
ated by an artist

(d) An image created
by an artist

Fig. 5: The images rendered by our system and the images used in the experiments.
Total rendering time of (a) is 8.0 sec(C.W.S: 8.0 / W.F.S: n/a / number of vertices:
75406) and that of (b) is 1330.0 sec(C.W.S: 5.0 / W.F.S: 1325.0 / number of vertices:
55091).

draw lines erroneously. Through application of the median filter to the one-ring
neighbor of each vertex, we can effectively suppress these errors.

In traditional animation, special regions to be lined on the surface of water
are opaque and monochromic. To generate these images, we divide curvature
values into three parts. The first is for ridges, the second for valleys, and the
third is the part between ridges and valleys. We paint ridge or valley parts as
shaded and the other parts as transparent. As a result, the water flow region
is separated from the other parts clearly. As the water flow region can be effi-
ciently represented by simple shading, a simple Lambertian illumination model
is sufficient for rendering.

4 Results and Analysis

To demonstrate the effectiveness of our system, the Cartoon Water Shader and
the Water Flow Shader were created as a Maya plug-in (version 2009). The plug-
in system was implemented in C++ with the Maya API. Moreover, to maximize
the efficiency of our plug-in, we provide a user interface.

The images in Fig. 5 show the results rendered by our system. Images (a)
and (b) clearly demonstrate that our system can produce high quality cartoon
animation water rendering. Additional results are available in demo clips(see
http://143.248.249.138/isvc09/paper66/). Rendering times of (a) and (b) are
recorded on an Intel Core 2 Quad Q6600 machine with 4GB memory, using
a single thread implementation. As the computation time of the Water Flow
Shader depends on the number of vertices with the curvature approximations
and the enhancement procedure, much more time is required to render the scene
via the Water Flow Shader than with the Cartoon Water Shader(see Fig. 5).

To verify the visual enhancement of our method over previous approaches,
we compare similar scenes with results rendered by earlier methods. In addition,



(a) A hippopotamus cov-
ered by water

(b) A ball of liquid (c) Immersed poles near an
embankment

Fig. 6: Visual comparison with two earlier approaches. Insets are the images from the
previous methods.

an evaluation was conducted to verify that our results are visually equivalent to
those created by an artist.

4.1 Visual Comparison with Previous Approaches

Among the studies on cartoon rendering of fluids, two prominent studies [9][24]
were selected, as their main subject is similar to ours.

Eden A. M. et al. successfully recovered many crucial visual cues generated by
the movement of a fluid [9]. However, their method is absent of optical features
(Fig. 6 (a)). In contrast, our method shows a refracted view of a hippopotamus
inside water. As we render the shading of an object after calculating the surface
normal and the light information, our method can flexibly cope with the light
position. With our method, the middle image in Fig. 6 is shaded following the
light direction. In Eden A. M. et al. [9], lighting information is not considered.

As an approach of Yu j. et al.[24] is template-based, their images are similar
to the drawing of an artist. However, the water types that they can represent
are limited. With this method it is difficult to express the relationship of the
shading of water, which is affected by the environment, with reflections of nearby
objects on the water or transparent refractive shapes under the water. On the
other hand, our image showing immersed poles near an embankment (Fig. 6);
accurately reflects all objects near the water. These reflective images are changed
following the variation of the mesh and the light.

4.2 Evaluation

An experiment was conducted to confirm that our results are visually equivalent
to those created by an artist.

Participants 30 participants took part in the evaluation. Among the par-
ticipants, 15 were experts who work in the field of art and graphics and are
considered to have excellent observation capability of images. The remaining
participants were non-specialists who were nevertheless familiar with cartoon
animation.



Material To collect the images for comparison, a 3D artist was asked to
create scenes similar to those in a feature animation. We chose two concepts: a
fountain in a forest and a boat sailing on the sea. These selected concepts were
visualized as a 3D scene by a 3D artist. Based on the images rendered by the
Lambertian illumination model, a cartoon animation artist composed water in
the style of cartoon animation. Our instructions were to represent the artist’s
sense inside the outline of water and to follow the motion of the water mesh.
However, we did not provide instructions concerning artistic flavors such as the
properties of shading, the color to use, or which points the water flow lines should
represent. These restrictions allowed the artist to draw freely, tapping into her
own ingenuity. All of the images for the test were organized into 12 drawings
per second, as in the style of limited animation usually employed in traditional
Japanese animation. Images in the experiments were scaled to 640×480, which
is the same scale used for the demo clip.

Analysis P-values for the two-sided hypothesis testing problem were com-
puted using an independent-samples t-test.

Procedure Each participant was informed that the only variation between
each set of video clips was the shading of water. Participants observed four video
clips two times each in a random order. Two clips depicted ‘a fountain in a forest’;
the first was created by our method, and the second was drawn by the artist. The
other two clips depicted clips of ‘a boat sailing on the sea’; the first was created
by our method, and the second was drawn by the artist. After observation of
four video clips, the participants were asked to rate the images from 1(Bad) to
5(Good). The first question was to evaluate the aesthetic impression of the video
clips according to the participant’s own standards. The second question was to
rank the clips according to whether they offered a rich depiction of the water.

Results and Discussion For the first question, participants answered that
the aesthetic impression of Fig. 5 (a) and Fig. 5 (c) were similar to each other
as Meanartist = 3.17, Meanours = 3.07. However, in the set of ‘a boat sailing
on the sea’ clips, the video clip generated by our method in Fig. 5 (b) was
rated to lend a higher aesthetic impression than the results by the artist (p <
0.01)(Meanartist = 3.03 vs Meanours = 4.03).

For the second question, most participants answered that Fig. 5 (a) and Fig. 5
(c) have similar values, implying that both clips exhibit a rich depiction of the
water, as Meanartist = 3.20, Meanours = 3.21. In comparison of Fig. 5 (b) and
Fig. 5 (d), Mours = 4.20 is better than Meanartist = 3.80. In conclusion, the
evaluation demonstrates that our results match those created by an artist in
terms of visual equivalence.

5 Conclusion and Discussion

The contribution of our system includes the proposed Cartoon Water Shader
which can convey the essential components of water -transparency, refraction,
and reflection- from an artistic point of view using a modified Phong illumi-
nation model. Automatic change between refraction and reflection, frequently



observed effects in traditional cartoon animation, is also offered in the shader.
Furthermore, utilizing the information of geometrical properties, Water Flow
Shader is specifically designed for rendering water flow observed in traditional
cartoon animation. To demonstrate the advantages of our method, we evaluated
rendering results in comparison with those yielded by previous approaches and
by an artist.

Although the proposed method can represent many characteristics of cartoon
animation style rendering of water, there remain issues that must be addressed
in the future. As we assume that the input meshes do not contain spray or bub-
bles, our current system cannot reproduce them. Another limitation involves the
regions that cannot be described by the geometry properties alone in the Water
Flow Shader. Although our system provides some thresholds for adjusting the
effects to meet the artist’s demands, exaggerated expressions of water flow lines
are difficult to produce. We believe that these problems should be investigated
in the future for a greater audience reception.
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